When dealing with infinite sheet and line charges, use the respective electric field formulas and simplify using given conditions for charge densities and distances.
Step 1: Electric Field Due to Infinite Sheet
The electric field due to an infinite sheet charge is given by:
\[
E_\text{sheet} = \frac{\sigma}{2\epsilon_0}.
\]
Step 2: Electric Field Due to Infinite Line Charge
The electric field due to an infinite line charge at a perpendicular distance \( r \) is given by:
\[
E_\text{line} = \frac{\lambda}{2\pi \epsilon_0 r}.
\]
Step 3: Electric Fields at Points 'P' and 'Q'
For point 'P', the distance from the line charge is \( r_P = \frac{3}{\pi} \). The resultant electric field is:
\[
E_P = E_\text{sheet} + E_\text{line} = \frac{\sigma}{2\epsilon_0} + \frac{\lambda}{2\pi \epsilon_0 r_P}.
\]
For point 'Q', the distance from the line charge is \( r_Q = \frac{4}{\pi} \). The resultant electric field is:
\[
E_Q = E_\text{sheet} + E_\text{line} = \frac{\sigma}{2\epsilon_0} + \frac{\lambda}{2\pi \epsilon_0 r_Q}.
\]
Step 4: Ratio of Electric Fields
The ratio \( \frac{E_P}{E_Q} \) is given by:
\[
\frac{E_P}{E_Q} = \frac{\frac{\sigma}{2\epsilon_0} + \frac{\lambda}{2\pi \epsilon_0 r_P}}{\frac{\sigma}{2\epsilon_0} + \frac{\lambda}{2\pi \epsilon_0 r_Q}}.
\]
Substitute \( 2|\sigma| = |\lambda| \), \( r_P = \frac{3}{\pi} \), and \( r_Q = \frac{4}{\pi} \):
\[
\frac{E_P}{E_Q} = \frac{\frac{\lambda}{4\epsilon_0} + \frac{\lambda}{2\pi \epsilon_0 \cdot \frac{3}{\pi}}}{\frac{\lambda}{4\epsilon_0} + \frac{\lambda}{2\pi \epsilon_0 \cdot \frac{4}{\pi}}}.
\]
Step 5: Simplify the Expression
Simplify the numerator and denominator:
\[
\frac{E_P}{E_Q} = \frac{\frac{\lambda}{4\epsilon_0} + \frac{\lambda}{6\epsilon_0}}{\frac{\lambda}{4\epsilon_0} + \frac{\lambda}{8\epsilon_0}}.
\]
Combine the terms:
\[
\frac{E_P}{E_Q} = \frac{\frac{3\lambda}{12\epsilon_0} + \frac{2\lambda}{12\epsilon_0}}{\frac{2\lambda}{8\epsilon_0} + \frac{\lambda}{8\epsilon_0}} = \frac{\frac{5\lambda}{12\epsilon_0}}{\frac{3\lambda}{8\epsilon_0}}.
\]
Simplify further:
\[
\frac{E_P}{E_Q} = \frac{5}{12} \times \frac{8}{3} = \frac{40}{36} = \frac{10}{9}.
\]
Equating \( \frac{10}{9} = \frac{4}{a} \), solve for \( a \):
\[
a = 6.
\]

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
