\(\frac{1}{2}\)
∵ tanθ=\(\frac{4H}{R}\)
⇒ tanθ = 4 × 1
⇒ tanθ = 4"
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
Escape speed is the minimum speed, which is required by the object to escape from the gravitational influence of a plannet. Escape speed for Earth’s surface is 11,186 m/sec.
The formula for escape speed is given below:
ve = (2GM / r)1/2
where ,
ve = Escape Velocity
G = Universal Gravitational Constant
M = Mass of the body to be escaped from
r = Distance from the centre of the mass