\(\frac{1}{2}\)
∵ tanθ=\(\frac{4H}{R}\)
⇒ tanθ = 4 × 1
⇒ tanθ = 4"
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Escape speed is the minimum speed, which is required by the object to escape from the gravitational influence of a plannet. Escape speed for Earth’s surface is 11,186 m/sec.
The formula for escape speed is given below:
ve = (2GM / r)1/2
where ,
ve = Escape Velocity
G = Universal Gravitational Constant
M = Mass of the body to be escaped from
r = Distance from the centre of the mass