\(\frac{1}{2}\)
∵ tanθ=\(\frac{4H}{R}\)
⇒ tanθ = 4 × 1
⇒ tanθ = 4"
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Escape speed is the minimum speed, which is required by the object to escape from the gravitational influence of a plannet. Escape speed for Earth’s surface is 11,186 m/sec.
The formula for escape speed is given below:
ve = (2GM / r)1/2
where ,
ve = Escape Velocity
G = Universal Gravitational Constant
M = Mass of the body to be escaped from
r = Distance from the centre of the mass