Step 1: Define the Problem
Total balls: 4 red + 6 blue = 10 balls. First ball drawn is blue (given). We need the probability that the second ball is red.
Step 2: Adjust for the First Draw
Since the first ball is blue, there are 6 blue balls initially, so the probability of drawing a blue ball first is \( \frac{6}{10} \). After drawing a blue ball, 9 balls remain: 4 red and 5 blue (since 6 - 1 = 5).
Step 3: Compute Conditional Probability
Probability that the second ball is red, given the first is blue, is the probability of drawing a red ball from the remaining 9 balls: \[ P(\text{second is red} \mid \text{first is blue}) = \frac{\text{Number of red balls}}{\text{Remaining balls}} = \frac{4}{9} \]
Based upon the results of regular medical check-ups in a hospital, it was found that out of 1000 people, 700 were very healthy, 200 maintained average health and 100 had a poor health record.
Let \( A_1 \): People with good health,
\( A_2 \): People with average health,
and \( A_3 \): People with poor health.
During a pandemic, the data expressed that the chances of people contracting the disease from category \( A_1, A_2 \) and \( A_3 \) are 25%, 35% and 50%, respectively.
Based upon the above information, answer the following questions:
(i) A person was tested randomly. What is the probability that he/she has contracted the disease?}
(ii) Given that the person has not contracted the disease, what is the probability that the person is from category \( A_2 \)?