Let $E$ be the emf of the battery, $r$ be its internal resistance, and $R$ be the external resistance.
The terminal voltage ($V_T$) across the battery when it is discharging (supplying current to $R$) is given by:
$V_T = E - Ir$, where $I$ is the current flowing in the circuit.
The current $I$ flowing through the external resistor $R$ is also related to the terminal voltage by Ohm's law:
$V_T = IR$.
So, $I = \frac{V_T}{R}$.
Given values:
External resistance $R = 8 \text{ } \Omega$.
Internal resistance $r = 0.2 \text{ } \Omega$.
Terminal voltage $V_T = 10 \text{ V}$.
First, calculate the current $I$:
$I = \frac{V_T}{R} = \frac{10 \text{ V}}{8 \text{ } \Omega} = \frac{10}{8} \text{ A} = \frac{5}{4} \text{ A} = 1.25 \text{ A}$.
Now, use the terminal voltage equation to find the emf $E$:
$V_T = E - Ir \Rightarrow E = V_T + Ir$.
$E = 10 \text{ V} + (1.25 \text{ A}) \times (0.2 \text{ } \Omega)$.
$Ir = 1.25 \times 0.2 = 1.25 \times \frac{2}{10} = \frac{2.50}{10} = 0.25 \text{ V}$.
So, $E = 10 \text{ V} + 0.25 \text{ V} = 10.25 \text{ V}$.
\[ \boxed{10.25 \text{ V}} \]