
A simplified small-signal equivalent circuit of a BJT-based amplifier is given below.
The small-signal voltage gain \( \frac{V_o}{V_S} \) (in V/V) is _________.

Let \( i_C, i_L, \) and \( i_R \) be the currents flowing through the capacitor, inductor, and resistor, respectively, in the circuit given below. The AC admittances are given in Siemens (S).
Which one of the following is TRUE?

A circuit with an electrical load having impedance $ Z $ is connected with an AC source as shown in the diagram. The source voltage varies in time as $ V(t) = 300 \sin(400t) \, \text{V} $, where $ t $ is time in seconds. 
List-I shows various options for the load. The possible currents $ i(t) $ in the circuit as a function of time are given in List-II.
Choose the option that describes the correct match between the entries in List-I to those in List-II.
In the circuit below, \( M_1 \) is an ideal AC voltmeter and \( M_2 \) is an ideal AC ammeter. The source voltage (in Volts) is \( v_s(t) = 100 \cos(200t) \). What should be the value of the variable capacitor \( C \) such that the RMS readings on \( M_1 \) and \( M_2 \) are 25 V and 5 A, respectively?

In the circuit shown, the identical transistors Q1 and Q2 are biased in the active region with \( \beta = 120 \). The Zener diode is in the breakdown region with \( V_Z = 5 \, V \) and \( I_Z = 25 \, mA \). If \( I_L = 12 \, mA \) and \( V_{EB1} = V_{EB2} = 0.7 \, V \), then the values of \( R_1 \) and \( R_2 \) (in \( k\Omega \), rounded off to one decimal place) are _________, respectively.
