Question:

$\cos \, A \, \cos \, 2A \, \cos \, 4A ... \cos \, 2^{n -1} A$ equals

Updated On: Mar 18, 2024
  • $\frac{\sin \, 2^n A}{2^n \, \sin \, A}$
  • $\frac{2^n \, \sin \, 2^n A}{ \sin \, A}$
  • $\frac{2^n \, \sin \, A}{ \sin \, 2^n \, A}$
  • $\frac{\sin \, A}{2^n \, \sin \, 2^n \, A}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

It is a standard result.
$\cos \, A \, \cos \, 2A \, \cos \, 2^2 \, A..... \cos \, 2^{n - 1} A$
$ = \frac{\sin \, 2^n \, A}{2^n \, \sin \, A}$
Was this answer helpful?
2
0

Concepts Used:

Trigonometric Equations

Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.

A list of trigonometric equations and their solutions are given below: 

Trigonometrical equationsGeneral Solutions
sin θ = 0θ = nπ
cos θ = 0θ = (nπ + π/2)
cos θ = 0θ = nπ
sin θ = 1θ = (2nπ + π/2) = (4n+1) π/2
cos θ = 1θ = 2nπ
sin θ = sin αθ = nπ + (-1)n α, where α ∈ [-π/2, π/2]
cos θ = cos αθ = 2nπ ± α, where α ∈ (0, π]
tan θ = tan αθ = nπ + α, where α ∈ (-π/2, π/2]
sin 2θ = sin 2αθ = nπ ± α
cos 2θ = cos 2αθ = nπ ± α
tan 2θ = tan 2αθ = nπ ± α