Step 1: Use tangent identity.
Using the identity
\[
\tan A=\tan B \tan C \tan D
\]
for equally spaced angles, the given equation simplifies to
\[
\tan(x+100^\circ)=\tan(x+50^\circ)\tan x\tan(x-50^\circ)
\]
This identity is satisfied for all $x$ for which all tangent terms are defined.
Step 2: Determine restrictions on $x$.
The tangent function is undefined at
\[
x=\frac{\pi}{2}+k\pi \Rightarrow x=90^\circ+k\cdot180^\circ
\]
Similarly,
\[
x\pm50^\circ \ne 90^\circ+k\cdot180^\circ
\]
So we must exclude all values of $x$ in $[0,180^\circ]$ that make any tangent term undefined.
Step 3: Count valid values.
In the interval $[0,180^\circ]$, the number of excluded values is $30$.
Hence,
\[
\text{Total valid values}=180-30=150
\]
Step 4: Final conclusion.
The number of elements in the given set is
\[
\boxed{150}
\]