Based on the data provided:
\[
U = 100 - 80 = 20 \, \text{cm}, \quad V = 180 - 100 = 80 \, \text{cm}
\]
Using the formula:
\[
\frac{1}{f} = \frac{1}{u} + \frac{1}{v} \quad \text{or} \quad f = \frac{uv}{u + v} \quad \Rightarrow f = \frac{20 \times 80}{20 + 80} = 16 \, \text{cm}
\]
For error analysis:
\[
\frac{1}{f} = \frac{1}{u} + \frac{1}{v}
\]
Differentiating:
\[
\frac{Df}{f^2} = \frac{Du}{u^2} + \frac{Dv}{v^2}
\]
Now:
\[
\Delta u = 0.4 \, \text{cm}, \, \Delta v = 0.4 \, \text{cm}
\]
Now,
\[
\frac{\Delta f}{f} = \left[ \frac{16 \times 0.4}{(80)^2} + \frac{16 \times 0.4}{(20)^2} \right]
\]
\[
\Rightarrow \frac{\Delta f}{f} = 16 \times 0.4 \left( \frac{17}{400} \right) \quad \Rightarrow \% \, \text{Error} = \frac{17 \times 0.4}{400} \times 1000 = 1.7
\]