Understanding the Problem
We are given the induced emf in a coil and the rate of change of current, and we need to find the inductance of the coil.
Solution
1. Formula for Induced EMF:
The induced emf in a coil is given by:
\( e = -L \frac{di}{dt} \)
where:
2. Given Values:
3. Substitute Values into the Formula:
\( 20 = -L \times (-2 \times 10^3) \)
4. Solve for Inductance (L):
\( L = \frac{20}{2 \times 10^3} \)
\( L = 10 \times 10^{-3} \, \text{H} \)
\( L = 10 \, \text{mH} \)
Final Answer
The inductance of the coil is \( 10 \, \text{mH} \).
A wire of resistance $ R $ is bent into a triangular pyramid as shown in the figure, with each segment having the same length. The resistance between points $ A $ and $ B $ is $ \frac{R}{n} $. The value of $ n $ is:
0.01 mole of an organic compound (X) containing 10% hydrogen, on complete combustion, produced 0.9 g H₂O. Molar mass of (X) is ___________g mol\(^{-1}\).