Understanding the Problem
We are given the induced emf in a coil and the rate of change of current, and we need to find the inductance of the coil.
Solution
1. Formula for Induced EMF:
The induced emf in a coil is given by:
\( e = -L \frac{di}{dt} \)
where:
2. Given Values:
3. Substitute Values into the Formula:
\( 20 = -L \times (-2 \times 10^3) \)
4. Solve for Inductance (L):
\( L = \frac{20}{2 \times 10^3} \)
\( L = 10 \times 10^{-3} \, \text{H} \)
\( L = 10 \, \text{mH} \)
Final Answer
The inductance of the coil is \( 10 \, \text{mH} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: