Understanding the Problem
We are given the induced emf in a coil and the rate of change of current, and we need to find the inductance of the coil.
Solution
1. Formula for Induced EMF:
The induced emf in a coil is given by:
\( e = -L \frac{di}{dt} \)
where:
2. Given Values:
3. Substitute Values into the Formula:
\( 20 = -L \times (-2 \times 10^3) \)
4. Solve for Inductance (L):
\( L = \frac{20}{2 \times 10^3} \)
\( L = 10 \times 10^{-3} \, \text{H} \)
\( L = 10 \, \text{mH} \)
Final Answer
The inductance of the coil is \( 10 \, \text{mH} \).

A wire of resistance $ R $ is bent into a triangular pyramid as shown in the figure, with each segment having the same length. The resistance between points $ A $ and $ B $ is $ \frac{R}{n} $. The value of $ n $ is:

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
