Question:

$ \int{({{\sin }^{6}}x+{{\cos }^{6}}x+3{{\sin }^{2}}x \,{{\cos }^{2}}x)}dx $ is equal to

Updated On: May 18, 2024
  • $ x+c $
  • $ \frac{3}{2}\sin 2x+c $
  • $ -\frac{3}{2}\cos 2x+c $
  • $ \frac{1}{3}\sin 3x-\cos 3x+c $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let $ I=\int{({{\sin }^{6}}x+{{\cos }^{6}}x+3{{\sin }^{2}}x{{\cos }^{2}}x)}dx $
$=\int{\{{{({{\sin }^{2}}x)}^{3}}+{{({{\cos }^{2}}x)}^{3}}} $ $ +3{{\sin }^{2}}x{{\cos }^{2}}x\}dx\} $
$=\int{\left[ \begin{align} & ({{\sin }^{2}}x+{{\cos }^{2}}x)({{\sin }^{4}}x+{{\cos }^{4}}x \\ & -{{\sin }^{2}}x{{\cos }^{2}}x)+3{{\sin }^{2}}x{{\cos }^{2}}x \\ \end{align} \right]}dx $
$=\int{\left[ \begin{align} & {{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-3{{\sin }^{2}}x{{\cos }^{2}}x \\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+3{{\sin }^{2}}x{{\cos }^{2}}x \\ \end{align} \right]}dx $
$=\int{1\,dx}$
$ = x+c $
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.