Question:

$\displaystyle\int_{\pi/4}^{3\pi/4}\frac{dx}{1+\cos\,x}$ is equal to

Updated On: Jun 14, 2022
  • 2
  • -2
  • $ \frac{1}{2} $
  • $ -\frac{1}{2} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Let $ I = \int^{ 3 \pi / 2 }_{ \pi / 4 } \frac{ dx }{ 1 + \cos \, x }................. ( 1) $
$\Rightarrow $ $ I = \int^{ 3 \pi / 2 }_{ \pi / 4 } \frac{ dx }{ 1 + \cos ( \pi - x ) } $
$ I = \int^{ 3 \pi / 2 }_{ \pi / 4 } \frac{ dx }{ 1 - \cos x } ...............(2) $
On adding Eqs. (i) and (ii), we get
$ \, \, \, \, \, \, \, \, \, \, \, \, \, $ $ 2I = \int^{ 3 \pi / 2 }_{ \pi / 4 } \Bigg ( \frac{1}{ 1 + \cos \, x } + \frac{1}{ 1 - \cos \, x } \Bigg ) dx $
$\Rightarrow $ $ \, \, \, \, \, \, $ $ 2I = \int^{ 3 \pi / 2 }_{ \pi / 4 } \Bigg ( \frac{2}{ 1 - \cos^2 \, x } \bigg ) \, dx $
$\Rightarrow $ $ \, \, \, \, \, \, $ $ I = \int^{ 3 \pi / 2 }_{ \pi / 4 } cosec^2 \, x \, dx = [ - \cot \, x ] ^{3 \pi/ 4 }_{ \pi / 4 } $
$ \, \, \, \, \, \, \, \, \, \, \, \, \, $ $ = \bigg [ - \cot \frac{ 3 \pi}{ 4 } + \cot \frac{\pi}{ 4 } \bigg ]$
$ \, \, \, \, \, \, \, \, \, \, \, \, \, $ $ = - ( - 1 ) + 1 = 2 $
Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.