Question:

$\int\frac{3 ^{x}}{\sqrt{1-9 ^{x}}}dx\quad$is equal to

Updated On: Mar 4, 2024
  • $\left(log \, 3\right)sin^{-1}\left(3^{x}\right)+C$
  • $\frac{1}{3}sin^{-1}\left(3^{x}\right)+C$
  • $\left(\frac{1}{log 3}\right)sin^{-1}\left(3^{x}\right)+C$
  • $\frac{1}{9}sin^{-1}\left(3^{x}\right)+C$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let $I=\int \frac{3^{n}}{\sqrt{1-9^{x}}} \,d x$
$\Rightarrow \, I=\int \frac{3^{x}}{\sqrt{1-\left(3^{\times}\right)^{2}}} d x$
put $ t=3^{x} $
$d t=3^{x} \log 3 \cdot d x$
Then, $I=\frac{1}{\log 3} \int \frac{d t}{\sqrt{1-t^{2}}}$
$\Rightarrow\, I=\frac{1}{\log 3} \cdot \sin ^{-1} t+C$
$\Rightarrow\, I=\left(\frac{1}{\log 3}\right) \cdot \sin ^{-1}\left(3^{x}\right)+C$
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.