If the corresponding de Broglie wavelengths of a proton and a neutron are obtained as same, then which of the two will have greater kinetic energy?
From de Broglie wavelengths formula: \[ \lambda = \frac{h}{\sqrt{2mK}}, \] where \(m\) is the mass and \(K\) is the kinetic energy. For the same wavelength: \[ K \propto \frac{1}{m}. \] Since the proton has less mass than the neutron, its kinetic energy will be greater for the same wavelength.
Two p-n junction diodes \(D_1\) and \(D_2\) are connected as shown in the figure. \(A\) and \(B\) are input signals and \(C\) is the output. The given circuit will function as a _______. 
In the circuit with ideal devices, the power MOSFET is operated with a duty cycle of 0.4 in a switching cycle with \( I = 10 \, {A} \) and \( V = 15 \, {V} \). The power delivered by the current source, in W, is: \[ {(round off to the nearest integer).} \] 
The op-amps in the following circuit are ideal. The voltage gain of the circuit is __________ (round off to the nearest integer). 
The switch (S) closes at \( t = 0 \) sec. The time, in sec, the capacitor takes to charge to 50 V is ___________ (round off to one decimal place).