If the corresponding de Broglie wavelengths of a proton and a neutron are obtained as same, then which of the two will have greater kinetic energy?
From de Broglie wavelengths formula: \[ \lambda = \frac{h}{\sqrt{2mK}}, \] where \(m\) is the mass and \(K\) is the kinetic energy. For the same wavelength: \[ K \propto \frac{1}{m}. \] Since the proton has less mass than the neutron, its kinetic energy will be greater for the same wavelength.
The switch (S) closes at \( t = 0 \) sec. The time, in sec, the capacitor takes to charge to 50 V is _________ (round off to one decimal place).
The op-amps in the following circuit are ideal. The voltage gain of the circuit is __________(round off to the nearest integer).
In the system shown below, the generator was initially supplying power to the grid. A temporary LLLG bolted fault occurs at \( F \) very close to circuit breaker 1. The circuit breakers open to isolate the line. The fault self-clears. The circuit breakers reclose and restore the line. Which one of the following diagrams best indicates the rotor accelerating and decelerating areas?
The transformer connection given in the figure is part of a balanced 3-phase circuit where the phase sequence is “abc”. The primary to secondary turns ratio is 2:1. If \( I_a + I_b + I_c = 0 \), then the relationship between \( I_A \) and \( I_{ad} \) will be:
In the circuit shown below, if the values of \( R \) and \( C \) are very large, the form of the output voltage for a very high frequency square wave input is best represented by:
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $