\(\int_{0}^{2} \sqrt{x+2} \,dx \)
Let x+2=t2⧠dx=2tdt
When x=0,t=√2 and,when x=2,t=2
∴\(\int_{0}^{2} \sqrt{x+2} \,dx \) =∫2√2(t2-2)√t22tdt
=2∫2√2(t2-2)t2dt
=2∫2√2(t4-2t2)dt
=2[t5/5-2t3/3]2√2
=2[\(\frac{32}{5}-\frac{16}{3}-\frac{4√2}{5}+\frac{4√2}{3}\)]
=2[\(\frac{96-80-12√2+20√2}{15}\)]
=2[16+8√2/15]
=\(\frac{16(2+√2)}{15}\)
=\(\frac{16√2(√2+1)}{15}\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
Assertion (A): The deflection in a galvanometer is directly proportional to the current passing through it.
Reason (R): The coil of a galvanometer is suspended in a uniform radial magnetic field.