\(∫_0^{\frac \pi2} \frac {sin\ x}{1+cos^2x}dx\)
\(Let \ cosx=t ⇒ -sinx \ dx=dt\)
\(When\ x=0,t=1 \ and\ when \ x=\frac \pi2,t=0\)
⇒∫\(∫_0^{\frac \pi2} \frac {sin\ x}{1+cos^2x}dx\) = \(-∫_1^0\frac {dt}{1+t^2}\)
=\(-[tan^{-1}t]_1^0\)
=\(-[tan^{-1}0-tan^{-1}1]\)
=\(-[-\frac \pi4]\)
=\(\frac \pi4\)
What is the Planning Process?