\(∫_0^{\frac \pi2} \frac {sin\ x}{1+cos^2x}dx\)
\(Let \ cosx=t ⇒ -sinx \ dx=dt\)
\(When\ x=0,t=1 \ and\ when \ x=\frac \pi2,t=0\)
⇒∫\(∫_0^{\frac \pi2} \frac {sin\ x}{1+cos^2x}dx\) = \(-∫_1^0\frac {dt}{1+t^2}\)
=\(-[tan^{-1}t]_1^0\)
=\(-[tan^{-1}0-tan^{-1}1]\)
=\(-[-\frac \pi4]\)
=\(\frac \pi4\)
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]

The graph shows the variation of current with voltage for a p-n junction diode. Estimate the dynamic resistance of the diode at \( V = -0.6 \) V.
