Question:

Evaluate the integral: \(∫_0^{\frac \pi2} \frac {sinx}{1+cos^2x}dx\)

Updated On: Oct 7, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(∫_0^{\frac \pi2} \frac {sin\ x}{1+cos^2x}dx\)

\(Let \ cosx=t ⇒ -sinx \ dx=dt\)

\(When\  x=0,t=1 \ and\  when \ x=\frac \pi2,t=0\)

⇒∫\(∫_0^{\frac \pi2} \frac {sin\ x}{1+cos^2x}dx\) = \(-∫_1^0\frac {dt}{1+t^2}\)

                                   =\(-[tan^{-1}t]_1^0\)

                                   =\(-[tan^{-1}0-tan^{-1}1]\)

                                   =\(-[-\frac \pi4]\)

                                   =\(\frac \pi4\)

Was this answer helpful?
0
0