1. Reaction between CH\(_3\)COOH and NaOH:
\[
\text{CH}_3\text{COOH} + \text{NaOH} \rightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O}.
\]
Initially:
\[
\text{Moles of CH}_3\text{COOH} = 50 \, \text{mL} \times 0.1 \, \text{M} = 5 \, \text{mmol}.
\]
\[
\text{Moles of NaOH} = 20 \, \text{mL} \times 0.1 \, \text{M} = 2 \, \text{mmol}.
\]
After reaction:
- CH\(_3\)COOH remaining = \(5 - 2 = 3 \, \text{mmol}\).
- CH\(_3\)COONa formed = \(2 \, \text{mmol}\).
The resulting solution is a buffer solution containing CH\(_3\)COOH (acid) and CH\(_3\)COONa (salt).
2. Henderson-Hasselbalch equation:
\[
\text{pH} = \text{p}K_a + \log_{10} \left( \frac{[\text{Salt}]}{[\text{Acid}]} \right).
\]
Substitute the values:
\[
\text{pH} = 4.76 + \log_{10} \left( \frac{2}{3} \right).
\]
3. Simplify using logarithm values:
\[
\log_{10} \left( \frac{2}{3} \right) = \log_{10}(2) - \log_{10}(3).
\]
Given \(\log 2 = 0.30\) and \(\log 3 = 0.48\):
\[
\log_{10} \left( \frac{2}{3} \right) = 0.30 - 0.48 = -0.18.
\]
Substituting back:
\[
\text{pH} = 4.76 - 0.18 = 4.58.
\]
4. Convert to scientific notation:
\[
\text{pH} = 4.58 \times 10^{-2}.
\]
5. Final Answer:
\[
\boxed{458 \times 10^{-2}}
\]