The value of \(|X|\) is \(\underline{90.39}\).
Explanation:
Evaluating the given values we get,
\(\triangle H^{\degree}_{combustion}\) = \(\triangle H^{\degree}_{f}(HgO)-\triangle H^{\degree}_{Hg(l)}+\frac{1}{2} \triangle H^{\degree}_{f}O_2\)
\(\triangle H^{\degree}_{f}(HgO) = -151.710+61.32\)
\(\triangle H^{\degree}_{f}=90.39\)
A heat pump, operating in reversed Carnot cycle, maintains a steady air temperature of 300 K inside an auditorium. The heat pump receives heat from the ambient air. The ambient air temperature is 280 K. Heat loss from the auditorium is 15 kW. The power consumption of the heat pump is _________ kW (rounded off to 2 decimal places).
A thermodynamically closed system contains 1 kg of hydrogen. The system undergoes a reversible polytropic process with polytropic index 1.3. The work output during the process is 400 kJ. During the process, hydrogen behaves as an ideal gas with constant specific heats. The absolute value of heat transfer during the process is _________ kJ (rounded off to 1 decimal place). Specific heat of hydrogen at constant pressure = 14.56 kJ kg\(^{-1}\) K\(^{-1}\)
Specific heat of hydrogen at constant volume = 10.4 kJ kg\(^{-1}\) K\(^{-1}\)
A thermal power plant is running with no reheat or regeneration. The specific enthalpy and specific entropy of steam at the turbine inlet are 3344 kJ/kg and 6.5 kJ/kg·K, respectively. The turbine isentropic efficiency is 0.9, and the mass flow rate of steam at the turbine inlet is 102 kg/s. The turbine power output is _________ MW (rounded off to 1 decimal place).
A positive, singly ionized atom of mass number $ A_M $ is accelerated from rest by the voltage $ 192 \, \text{V} $. Thereafter, it enters a rectangular region of width $ w $ with magnetic field $ \vec{B}_0 = 0.1\hat{k} \, \text{T} $. The ion finally hits a detector at the distance $ x $ below its starting trajectory. Which of the following option(s) is(are) correct?
$ \text{(Given: Mass of neutron/proton = } \frac{5}{3} \times 10^{-27} \, \text{kg, charge of the electron = } 1.6 \times 10^{-19} \, \text{C).} $
An electrochemical cell is a device that is used to create electrical energy through the chemical reactions which are involved in it. The electrical energy supplied to electrochemical cells is used to smooth the chemical reactions. In the electrochemical cell, the involved devices have the ability to convert the chemical energy to electrical energy or vice-versa.