Question:

$\displaystyle \int^{\sqrt{\pi}/2}_0$ $2x^{3} sin\left(x^{2}\right) dx =$dx is equal to

Updated On: Mar 4, 2024
  • $\frac{1}{\sqrt{2}} \left(1+\frac{\pi}{4}\right)$
  • $\frac{1}{\sqrt{2}} \left(1-\frac{\pi}{4}\right)$
  • $\frac{1}{\sqrt{2}} \left(\frac{\pi}{2}-1\right)$
  • $\frac{1}{\sqrt{2}} \left(1-\frac{\pi}{2}\right)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$ I =\int_{0}^{\sqrt{\pi} / 2} 2 x^{3} \sin \left(x^{2}\right) d x $
$=\int_{0}^{\sqrt{\pi} / 2} 2 x^{2} \cdot x \sin \left(x^{2}\right) d x $
Put $ x^{2}=t $
$\Rightarrow 2 x d x=d t $
Also, when $x=0, $ then $ t=0 $
and when $x=\frac{\sqrt{\pi}}{2}$, then $t=\frac{\pi}{4}$
$\Rightarrow I=\int_{0}^{\pi / 4} t \underset{I}{\text{sin}} \underset{ II }{t} d t$
$=[t(-\cos t)]_{0}^{\pi / 4}-\int_{0}^{\pi / 4}-\cos t(1) d t$
$=[-t \cos t]_{0}^{\pi / 4}+\int_{0}^{\pi / 4} \cos t d t$
$=[-t \cos t+\sin t]_{0}^{\pi / 4}$
$=\left[-\frac{\pi}{4} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right]$
$=\frac{1}{\sqrt{2}}\left(1-\frac{\pi}{4}\right)$
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.