Question:

$\int\limits^2_0 |1 -x| dx$ is equal to

Updated On: Mar 18, 2024
  • 0
  • 1
  • $\frac{3}{2}$
  • $\frac{1}{2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$\int\limits_{0}^{2}|1-x| d x=\int\limits_{0}^{1}(1-x) d x+\int\limits_{1}^{2}(x-1) d x$
$=\left[x-\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{2}$
$=1-\frac{1}{2}+\left[2-2-\left(\frac{1}{2}-1\right)\right]$
$=\frac{1}{2}+\frac{1}{2}=1$
Was this answer helpful?
0
0