$\int\limits_{0}^{2}|1-x| d x=\int\limits_{0}^{1}(1-x) d x+\int\limits_{1}^{2}(x-1) d x$ $=\left[x-\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{2}$ $=1-\frac{1}{2}+\left[2-2-\left(\frac{1}{2}-1\right)\right]$ $=\frac{1}{2}+\frac{1}{2}=1$
Was this answer helpful?
0
0
Top Questions on Some Properties of Definite Integrals