The given integral is:
\[ \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} dx. \]
To simplify the denominator, use the identity:
\[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2 \sin^2 x \cos^2 x. \]
Since \(\sin^2 x + \cos^2 x = 1\), we get:
\[ \sin^4 x + \cos^4 x = 1 - 2 \sin^2 x \cos^2 x. \]
Now use \(\sin^2 x \cos^2 x = \left(\frac{\sin 2x}{2}\right)^2 = \frac{\sin^2 2x}{4}\):
\[ \sin^4 x + \cos^4 x = 1 - \frac{\sin^2 2x}{2}. \]
Now the integral becomes:
\[ \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{1 - \frac{\sin^2 2x}{2}} dx. \]
Simplify \(\sin x \cos x\) using \(\sin x \cos x = \frac{1}{2} \sin 2x\):
\[ \int_{0}^{\pi} \frac{x^2 \cdot \frac{1}{2} \sin 2x}{1 - \frac{\sin^2 2x}{2}} dx = \frac{1}{2} \int_{0}^{\pi} \frac{x^2 \sin 2x}{1 - \frac{\sin^2 2x}{2}} dx. \]
Use Symmetry and Simplify. Further, observe that the function \(\sin 2x\) is symmetric around \(x = \frac{\pi}{2}\), and use this symmetry property to evaluate over \([0, \pi]\). Split the integral and evaluate each part carefully.
After evaluating the integral, we find that:
\[ \frac{120}{\pi^2} \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} dx = 15. \]
Thus, the answer is:
\[ 15. \]
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.