The given integral is:
\[ \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} dx. \]
To simplify the denominator, use the identity:
\[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2 \sin^2 x \cos^2 x. \]
Since \(\sin^2 x + \cos^2 x = 1\), we get:
\[ \sin^4 x + \cos^4 x = 1 - 2 \sin^2 x \cos^2 x. \]
Now use \(\sin^2 x \cos^2 x = \left(\frac{\sin 2x}{2}\right)^2 = \frac{\sin^2 2x}{4}\):
\[ \sin^4 x + \cos^4 x = 1 - \frac{\sin^2 2x}{2}. \]
Now the integral becomes:
\[ \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{1 - \frac{\sin^2 2x}{2}} dx. \]
Simplify \(\sin x \cos x\) using \(\sin x \cos x = \frac{1}{2} \sin 2x\):
\[ \int_{0}^{\pi} \frac{x^2 \cdot \frac{1}{2} \sin 2x}{1 - \frac{\sin^2 2x}{2}} dx = \frac{1}{2} \int_{0}^{\pi} \frac{x^2 \sin 2x}{1 - \frac{\sin^2 2x}{2}} dx. \]
Use Symmetry and Simplify. Further, observe that the function \(\sin 2x\) is symmetric around \(x = \frac{\pi}{2}\), and use this symmetry property to evaluate over \([0, \pi]\). Split the integral and evaluate each part carefully.
After evaluating the integral, we find that:
\[ \frac{120}{\pi^2} \int_{0}^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} dx = 15. \]
Thus, the answer is:
\[ 15. \]
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{β}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.