Question:

\(\int\frac{1}{x^3}\sqrt{1-\frac{1}{x^2}}dx=\)

Updated On: May 31, 2024
  • \(\frac{-1}{6}(1-\frac{1}{x^2})^{\frac{3}{2}}+C\)
  • \(\frac{1}{3}(1-\frac{1}{x^2})^{\frac{3}{2}}+C\)
  • \(\frac{-1}{3}(1-\frac{1}{x^2})^{\frac{3}{2}}+C\)
  • \(\frac{4}{3}(1-\frac{1}{x^2})^{\frac{3}{2}}+C\)
  • \(\frac{-4}{3}(1-\frac{1}{x^2})^{\frac{3}{2}}+C\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct option is (B) : \(\frac{1}{3}(1-\frac{1}{x^2})^{\frac{3}{2}}+C\)
Was this answer helpful?
0
0