\(1 \times 10^{-5} M \,AgNO _3\)is added to \(1\, L\) of saturated solution of\(AgBr\) The conductivity of this solution at \(298 \,K\) is ___ [Given : \(K _{\text {SP }}( AgBr )=49 \times 10^{-13} at 298\, K\)\(\lambda_{ Ag ^{+}}^0=6 \times 10^{-3} S\, m ^2\, mol ^{-1}\) \(\lambda_{ Br ^{-}}^0=8 \times 10^{-3} S\, m ^2\, mol ^{-1}\) \(\lambda_{ NO _3^{-}}^0=7 \times 10^{-3} \,S\, m ^2 \,mol ^{-1}\) ]
Remember the relationship between conductivity, molar conductivity, and concentration: \(κ =\sumλ_ic_i\). Also, be mindful of the common ion effect when dealing with solubility equilibria.
The dissociation of AgBr is:
\[\text{AgBr}(s) \leftrightharpoons \text{Ag}^+(\text{aq}) + \text{Br}^-(\text{aq}),\]
\[K_{\text{sp}} = [\text{Ag}^+][\text{Br}^-] = 4.9 \times 10^{-13}.\]
Let the solubility of AgBr be \(s\) mol/L. Then, \([\text{Ag}^+] = s\) and \([\text{Br}^-] = s\).
\[s^2 = 4.9 \times 10^{-13}, \quad s = \sqrt{4.9 \times 10^{-13}} = 7 \times 10^{-7} \, \text{M}.\]
Since \(1 \, \text{L}\) of saturated AgBr solution is taken, the concentration of \(\text{Ag}^+\) and \(\text{Br}^-\) from AgBr are both \(7 \times 10^{-7} \, \text{M}\). We are adding \(1 \times 10^{-5} \, \text{M}\) AgNO\(_3\).
The \(\text{Ag}^+\) from AgNO\(_3\) will be significantly greater than the \(\text{Ag}^+\) from AgBr, so we can approximate the total \([\text{Ag}^+]\) as \(1 \times 10^{-5} \, \text{M}\).
The common ion effect will suppress the solubility of AgBr, so the \([\text{Br}^-]\) remains approximately \(7 \times 10^{-7} \, \text{M}\). The \([\text{NO}_3^-]\) will be \(1 \times 10^{-5} \, \text{M}\).
Conductivity (\(\kappa\))
The formula for conductivity is:
\[\kappa = \sum \lambda_i c_i.\]
Substitute the values:
\[\kappa = \lambda_{\text{Ag}^+}[\text{Ag}^+] + \lambda_{\text{Br}^-}[\text{Br}^-] + \lambda_{\text{NO}_3^-}[\text{NO}_3^-].\]
\[\kappa = (6 \times 10^{-3})(1 \times 10^{-5}) + (8 \times 10^{-3})(7 \times 10^{-7}) + (7 \times 10^{-3})(1 \times 10^{-5}).\]
\[\kappa = 6 \times 10^{-8} + 5.6 \times 10^{-9} + 7 \times 10^{-8}.\]
\[\kappa \approx 13.56 \times 10^{-8} = 14 \times 10^{-8} \, \text{S m}^{-1}.\]
Final Answer:
The conductivity is \(14 \times 10^{-8} \, \text{S m}^{-1}\).
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
An electrochemical cell is a device that is used to create electrical energy through the chemical reactions which are involved in it. The electrical energy supplied to electrochemical cells is used to smooth the chemical reactions. In the electrochemical cell, the involved devices have the ability to convert the chemical energy to electrical energy or vice-versa.