We need to evaluate the expression \( (1+\sqrt{3}i)^6 - (\sqrt{3}+i)^6 \).
We will use De Moivre's Theorem, which states that for a complex number \(z = r(\cos\theta + i\sin\theta)\), \(z^n = r^n(\cos(n\theta) + i\sin(n\theta))\).
First, let's convert \(1+\sqrt{3}i\) into polar form.
Let \(z_1 = 1+\sqrt{3}i\).
The modulus \(r_1 = |1+\sqrt{3}i| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1+3} = \sqrt{4} = 2\).
The argument \(\theta_1\) is such that \(\cos\theta_1 = \frac{1}{2}\) and \(\sin\theta_1 = \frac{\sqrt{3}}{2}\). So, \( \theta_1 = \frac{\pi}{3} \).
Thus, \( 1+\sqrt{3}i = 2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right) \).
Now, calculate \( (1+\sqrt{3}i)^6 \):
Using De Moivre's Theorem:
\( (1+\sqrt{3}i)^6 = 2^6\left(\cos\left(6 \cdot \frac{\pi}{3}\right) + i\sin\left(6 \cdot \frac{\pi}{3}\right)\right) \)
\( = 64\left(\cos(2\pi) + i\sin(2\pi)\right) \)
\( = 64(1 + i \cdot 0) \)
\( = 64 \)
Next, let's convert \( \sqrt{3}+i \) into polar form.
Let \(z_2 = \sqrt{3}+i\).
The modulus \(r_2 = |\sqrt{3}+i| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3+1} = \sqrt{4} = 2\).
The argument \(\theta_2\) is such that \(\cos\theta_2 = \frac{\sqrt{3}}{2}\) and \(\sin\theta_2 = \frac{1}{2}\). So, \( \theta_2 = \frac{\pi}{6} \).
Thus, \( \sqrt{3}+i = 2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) \).
Now, calculate \( (\sqrt{3}+i)^6 \):
Using De Moivre's Theorem:
\( (\sqrt{3}+i)^6 = 2^6\left(\cos\left(6 \cdot \frac{\pi}{6}\right) + i\sin\left(6 \cdot \frac{\pi}{6}\right)\right) \)
\( = 64\left(\cos(\pi) + i\sin(\pi)\right) \)
\( = 64(-1 + i \cdot 0) \)
\( = -64 \)
Finally, subtract the two results:
\( (1+\sqrt{3}i)^6 - (\sqrt{3}+i)^6 = 64 - (-64) \)
\( = 64 + 64 \)
\( = 128 \)