We are given the integral \( \int \frac{1}{e^{2x} - 1} \, dx \) and are asked to find the solution.
We can solve this using substitution. Let:
\( u = e^{2x} - 1 \),
so that \( du = 2e^{2x} \, dx \), or equivalently \( \frac{du}{2} = e^{2x} \, dx \).
Now, rewrite the integral in terms of \( u \):
\( \int \frac{1}{e^{2x} - 1} \, dx = \frac{1}{2} \int \frac{1}{u} \, du \).
The integral of \( \frac{1}{u} \) is \( \log|u| \), so we have:
\( \frac{1}{2} \log|e^{2x} - 1| + C \).
The correct answer is \( \frac{1}{2} \log|e^{2x} - 1| + C \).