Question:

\(∫\dfrac{1}{cosx(sinx+2cosx)} dx=\)

Updated On: Apr 8, 2025
  • \(ln|(1-tanx)|+C         \)            

  • \(ln |3+sinx|+C\)

  • \(ln |2+tanx|+C\)

  • \(ln |1+2secx|+C\)

  • \(ln |2-tanx|+C\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

Given: \(∫\dfrac{1}{cosx(sinx+2cosx)} dx\)

take, \(I = ∫\dfrac{1}{cosx(sinx+2cosx)} dx\)

          \(= ∫\dfrac{1}{cosx.sinx+2cos^{2}x)} dx\)

         \(= ∫\dfrac{sec^{2}x}{tanx+2} dx\)        ⇢⇢[by dividing \(cos^{2}x\) on both numerator and denominator]

             take \(tanx +2 = u\), then derivate both sides w.r.t x we get 

            \(sec^{2}x dx= du\)

Bye applying this we can write  , \(∫\dfrac{1}{u} du\)

 \(= ln|u|\)

 \(= ln|(tanx+2)|+C\)  

 \(= ln|(2+tanx)|+C\)    

Was this answer helpful?
2
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Let the integral be

\[ I = \int \frac{dx}{\cos x (\sin x + 2 \cos x)} \]

\[ I = \int \frac{\sec x \, dx}{2 + \tan x} \]

Let \( u = 2 + \tan x \). Then \( du = \sec^2 x \, dx \).

We have \( \sec x = \sqrt{1 + \tan^2 x} = \sqrt{1 + (u-2)^2} \).

\[ I = \int \frac{\sqrt{1 + (u-2)^2}}{u} \frac{du}{\sqrt{1+(u-2)^2}} = \int \frac{du}{u} = \ln|u| + C = \ln|2 + \tan x| + C \]

Final Answer: The final answer is \( {\ln|2+\tan x|+C} \).

Was this answer helpful?
0
0

Concepts Used:

Methods of Integration

Given below is the list of the different methods of integration that are useful in simplifying integration problems:

Integration by Parts:

 If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:

∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C

Here f(x) is the first function and g(x) is the second function.

Method of Integration Using Partial Fractions:

The formula to integrate rational functions of the form f(x)/g(x) is:

∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx

where

f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and

g(x) = q(x).s(x)

Integration by Substitution Method

Hence the formula for integration using the substitution method becomes:

∫g(f(x)) dx = ∫g(u)/h(u) du

Integration by Decomposition

Reverse Chain Rule

This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,

∫g'(f(x)) f'(x) dx = g(f(x)) + C

Integration Using Trigonometric Identities