The depression in freezing point \( \Delta T_f \) is given by the formula:
\[ \Delta T_f = K_f \cdot m \]
where \( K_f \) is the molal freezing point depression constant (cryoscopic constant) of the solvent, and \(m\) is the molality of the solution.
Molality \( m = \frac{\text{moles of solute}}{\text{mass of solvent in kg}} \).
Let \( w_2 \) be the mass of solute, \( M_2 \) be the molar mass of solute, and \( w_1 \) be the mass of solvent.
Then, moles of solute \( = \frac{w_2}{M_2} \).
Molality \( m = \frac{w_2/M_2}{w_1 (\text{in kg})} = \frac{w_2 \times 1000}{M_2 \times w_1 (\text{in g})} \).
So, \( \Delta T_f = K_f \cdot \frac{w_2 \times 1000}{M_2 \times w_1} \).
We need to find \( M_2 \).
Rearranging the formula:
\[ M_2 = K_f \cdot \frac{w_2 \times 1000}{\Delta T_f \times w_1} \]
Given values:
Mass of solute \( w_2 = 1.
95 \) g.
Mass of solvent (benzene) \( w_1 = 100 \) g.
Depression in freezing point \( \Delta T_f = 0.
64 \) K.
Cryoscopic constant for benzene \( K_f = 5.
12 \, \text{K kg mol}^{-1} \).
Substitute the values:
\[ M_2 = (5.
12 \, \text{K kg mol}^{-1}) \cdot \frac{(1.
95 \, \text{g}) \times 1000}{(0.
64 \, \text{K}) \times (100 \, \text{g})} \]
Units check: K cancels.
kg from \(K_f\) cancels with kg from converting \(w_1\) to kg (implicit in the \(1000/w_1\) factor).
Result will be in g/mol.
\[ M_2 = 5.
12 \times \frac{1.
95 \times 10}{0.
64} \]
\[ M_2 = \frac{5.
12 \times 19.
5}{0.
64} \]
Notice that \( 5.
12 / 0.
64 = 512 / 64 \).
\( 64 \times 8 = 512 \).
So, \( \frac{5.
12}{0.
64} = 8 \).
\[ M_2 = 8 \times 19.
5 \]
\[ M_2 = 8 \times (20 - 0.
5) = 160 - 8 \times 0.
5 = 160 - 4 = 156 \]
The molar mass of the solute is \( 156 \, \text{g mol}^{-1} \).
This matches option (2).