When solving integrals involving trigonometric functions, consider using substitutions to simplify the expression. Using the substitution \( t = \tan x \) often helps transform the integral into a simpler form, as shown in this example.
The correct answer is: (A): \(\frac{1}{6}\tan^{-1}\left(\frac{2\tan x}{3}\right) + C\)
We are tasked with evaluating the integral:
\(\int \frac{1}{1 + 3\sin^2 x + 8 \cos^2 x} \, dx\)
Step 1: Simplify the expression
The given expression contains both sine and cosine terms. We begin by rewriting the denominator to combine like terms:
\( 1 + 3\sin^2 x + 8\cos^2 x = 1 + 3\sin^2 x + 8(1 - \sin^2 x) = 1 + 3\sin^2 x + 8 - 8\sin^2 x \)
After simplifying, we get:
\( 9 - 5\sin^2 x \)
Step 2: Use a substitution to simplify further
Next, we use the substitution \( t = \tan x \), which implies that \( \sec^2 x \, dx = dt \). Since \( \sin^2 x = \frac{t^2}{1 + t^2} \), we can rewrite the denominator in terms of \( t \). The integral becomes:
\( \int \frac{1}{9 - 5\frac{t^2}{1 + t^2}} \, dt \)
Step 3: Simplify the expression
After simplifying the denominator, we get a rational function of \( t \), which can be integrated using standard methods. The resulting integral simplifies to:
\( \frac{1}{6}\tan^{-1}\left(\frac{2t}{3}\right) + C \)
Step 4: Substitute back to original variable
Finally, substitute \( t = \tan x \) back into the expression to get the final result:
\( \frac{1}{6}\tan^{-1}\left(\frac{2\tan x}{3}\right) + C \)
Conclusion:
The correct answer is (A): \(\frac{1}{6}\tan^{-1}\left(\frac{2\tan x}{3}\right) + C\)
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2