We are given the integral: \[ \int\limits_{0}^{\frac{\pi}{2}}\frac{\cos x \sin x}{1+\sin x} \, dx \]
Let us simplify the integrand:
Use substitution: Let \( u = 1 + \sin x \)
Then, \[ \frac{du}{dx} = \cos x \Rightarrow du = \cos x \, dx \] Also, \( \sin x = u - 1 \), so: \[ \cos x \, dx = du, \quad \sin x = u - 1 \Rightarrow \cos x \sin x \, dx = (u - 1) \, du \] Thus the integral becomes: \[ \int \frac{(u - 1)}{u} \, du = \int \left(1 - \frac{1}{u} \right) du = u - \ln|u| \] Now change limits: - When \( x = 0 \), \( u = 1 + \sin 0 = 1 \) - When \( x = \frac{\pi}{2} \), \( u = 1 + \sin \frac{\pi}{2} = 2 \) So, \[ \int\limits_{1}^{2} \left(1 - \frac{1}{u} \right) du = \left[ u - \ln|u| \right]_1^2 = (2 - \ln 2) - (1 - \ln 1) = 2 - \ln 2 - 1 = 1 - \ln 2 \]
Final Answer: \(1 - \log 2\)
Let the integral be \(I\).
\[ I = \int\limits_{0}^{\frac{\pi}{2}}\frac{\cos x\sin x}{1+\sin x}\ dx \]
We use the substitution method. Let \(u = 1 + \sin x\).
Then, differentiate with respect to \(x\):
\[ \frac{du}{dx} = \cos x \]
So, \(du = \cos x \, dx\).
We also need to express \(\sin x\) in terms of \(u\). From \(u = 1 + \sin x\), we get \(\sin x = u - 1\).
Now, we change the limits of integration:
When \(x = 0\), \(u = 1 + \sin(0) = 1 + 0 = 1\). The lower limit becomes \(u=1\).
When \(x = \frac{\pi}{2}\), \(u = 1 + \sin\left(\frac{\pi}{2}\right) = 1 + 1 = 2\). The upper limit becomes \(u=2\).
Substitute \(u\), \(du\), and \(\sin x\) into the integral:
\[ I = \int_{1}^{2} \frac{(u-1)}{u} \, du \]
Simplify the integrand:
\[ I = \int_{1}^{2} \left(\frac{u}{u} - \frac{1}{u}\right) \, du = \int_{1}^{2} \left(1 - \frac{1}{u}\right) \, du \]
Now, integrate with respect to \(u\):
\[ I = \left[ u - \ln|u| \right]_{1}^{2} \]
Evaluate the antiderivative at the upper and lower limits:
\[ I = (2 - \ln|2|) - (1 - \ln|1|) \]
Since the limits are positive, we can remove the absolute value signs. We know that \(\ln(1) = 0\).
\[ I = (2 - \ln(2)) - (1 - 0) \]
\[ I = 2 - \ln(2) - 1 \]
\[ I = \mathbf{1 - \ln(2)} \]
Assuming 'log' represents the natural logarithm ('ln'), the result is \(1 - \log 2\).
Comparing this with the given options, the correct option is:
1 - log 2