Question:

Evaluate the definite integral: \(\int_{0}^{\frac{\pi}{2}}\frac{cos^{2}xdx}{cos^{2}x+4sin^{2}x}\)

Updated On: Oct 7, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(Let\space I=\int_{0}^{\frac{\pi}{2}}\frac{cos^{2}xdx}{cos^{2}x+4sin^{2}x}\)

\(⇒I=\int_{0}^{\frac{\pi}{2}}\frac{cos^{2}x}{cos^{2}x+4(1-cos^{2}x)}dx\)

\(⇒I=∫^{\frac{π}{2}}_0\frac{cos^2x}{cos^2x+4-4cos^2x}dx\)

\(⇒I=\frac{-1}{3}∫^{\frac{π}{2}}_0 \frac{4-3cos^2x-4}{4-3cos^2x}dx\)

\(⇒I=\frac{-1}{3}∫^{\frac{π}{2}}_0 \frac{4-3cos^2x}{4-3cos^2x}dx+\frac{1}{3}∫^{\frac{π}{2}}_0\frac{4}{4-3cos^2x}dx\)

\(⇒I=\frac{-1}{3}∫^{\frac{π}{2}}_0 1dx+\frac{1}{3}∫^{\frac{π}{2}}_0 \frac{4sec^2x}{4sec^2x-3}dx\)

\(⇒I=\frac{-1}{3}[x]^{\frac{π}{2}}_0+\frac{1}{3}∫^{\frac{π}{2}}_0 \frac{4sec^2x}{4(1+tan^2x)-3}dx\)

\(⇒I=-\frac{π}{6}+\frac{2}{3}∫^{\frac{π}{2}}_0 \frac{2sec^2x}{1+4tan^2x}dx...(1)\)

Consider,\(∫^\frac{π}{2}_0 \frac{2sec^2x}{1+4tan^2x}dx\)

Let \(2tanx=t⇒2sec^2xdx=dt\)

When \(x=0,t=0\) and when \(x=\frac{π}{2},t=∞\)

\(⇒∫^{\frac{π}{2}}_0 \frac{2sec^2x}{1+4tan^2x}dx=∫^∞_0\frac{dt}{1+t^2}\)

\(=[tan^{-1}t]^∞_0\)

\(=[tan^{-1}(∞)-tan^{-1}(0)]\)
\(=\frac{π}{2}\)

Therefore,from(1),we obtain

\(I=-\frac{π}{6}+\frac{2}{3}[\frac{π}{2}]=\frac{π}{3}-\frac{π}{6}=\frac{π}{6}\)

Was this answer helpful?
0
0