Since the process is at constant volume, the change in internal energy \(\Delta U\) is given by:
\[\Delta U = ms\Delta T\]
where \(m = 0.08 \, \text{kg}\), \(s = 0.17 \, \text{kcal/kg}^\circ\text{C}\), and \(\Delta T = 5^\circ \text{C}\).
Convert \(s\) from kcal to joules:
\[s = 0.17 \times 1000 \times 4.18 \, \text{J/kg}^\circ\text{C}\]
Then,
\[\Delta U = 0.08 \times (0.17 \times 1000 \times 4.18) \times 5 \approx 284 \, \text{J}\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: