Since the process is at constant volume, the change in internal energy \(\Delta U\) is given by:
\[\Delta U = ms\Delta T\]
where \(m = 0.08 \, \text{kg}\), \(s = 0.17 \, \text{kcal/kg}^\circ\text{C}\), and \(\Delta T = 5^\circ \text{C}\).
Convert \(s\) from kcal to joules:
\[s = 0.17 \times 1000 \times 4.18 \, \text{J/kg}^\circ\text{C}\]
Then,
\[\Delta U = 0.08 \times (0.17 \times 1000 \times 4.18) \times 5 \approx 284 \, \text{J}\]
Match List - I with List - II.
Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: