>
MHT CET
>
Mathematics
List of top Mathematics Questions asked in MHT CET
If A, B, C are the angles of
$\Delta ABC$
then
$\cot \, A. \cot \, B + \cot \, B. \cot \, C + \cot \, C. \cot \, A =$
MHT CET - 2018
MHT CET
Mathematics
Trigonometric Equations
The number of solutions of $\sin \, x + \sin \, 3x + \sin \, 5x = 0$ in the interval $\left[\frac{\pi}{2} , 3 \frac{\pi}{2}\right] $ is
MHT CET - 2018
MHT CET
Mathematics
General and Particular Solutions of a Differential Equation
Matrix $A = \begin{bmatrix}1&2&3\\ 1&1&5\\ 2&4&7\end{bmatrix}$then the value of $a_{31} A_{31} + a_{32} A_{32} + a_{33 } + A_{33} $ is
MHT CET - 2018
MHT CET
Mathematics
Determinants
The maximum value of
$2x + y$
subject to
$3x + 5y \leq 26$
and
$5x + 3y \leq 30, x \geq 0, y \geq 0$
is
MHT CET - 2018
MHT CET
Mathematics
Maxima and Minima
The sides of a rectangle are given by $x = \pm \, a$ and $y = \pm \, b$. The equation of the circle passing through the vertices of the rectangle is
MHT CET - 2018
MHT CET
Mathematics
Conic sections
The negation of the statement: "Getting above 95% marks is necessary condition for Hema to get the admission is good college"
MHT CET - 2018
MHT CET
Mathematics
validating statements
If $\int\limits^{K}_0 \frac{dx}{2 + 18 x^2} = \frac{\pi}{24}$, then the value of K is
MHT CET - 2018
MHT CET
Mathematics
Definite Integral
If $\vec{a} , \vec{b} , \vec{c}$ are mutually perpendicular vectors having magnitudes 1, 2, 3 respectively, then $[\vec{a} + \vec{b} + \vec{c} \, \, \vec{b} - \vec{a} - \vec{c}] = ?$
MHT CET - 2018
MHT CET
Mathematics
Vectors
If $2 \sin \left( \theta + \frac{\pi}{3}\right) = \cos \left( \theta -\frac{\pi}{6}\right) , $ then $\tan \, \theta = $
MHT CET - 2018
MHT CET
Mathematics
Trigonometric Identities
The value of $\cos^{-1} \left(\cot\left(\frac{\pi}{2}\right)\right) + \cos^{-1} \left(\sin\left(\frac{2\pi}{3}\right)\right) $ is
MHT CET - 2017
MHT CET
Mathematics
Properties of Inverse Trigonometric Functions
If vector $\vec{r}$ with d.c.s. $l, m, n$ is equally inclined to the co-ordinate axes, then the total number of such vectors is
MHT CET - 2017
MHT CET
Mathematics
Vector Algebra
The equation of the plane through
$(-1, 1 , 2 ) $
whose normal makes equal acute angles with co-ordinate axes is
MHT CET - 2017
MHT CET
Mathematics
Three Dimensional Geometry
$\Delta \, ABC$
has vertices at
$A = (2, 3,5), B = (-1,3, 2)$
and
$C = (\lambda , 5, \mu )$
. If the median through A is equally inclined to the axes, then the values of
$\lambda$
and
$\mu$
respectively are
MHT CET - 2017
MHT CET
Mathematics
introduction to three dimensional geometry
If $\int^{\pi/2}_{0} \log\cos x dx =\frac{\pi}{2} \log\left(\frac{1}{2}\right)$ then $ \int^{\pi/2}_{0} \log\sec x dx = $
MHT CET - 2017
MHT CET
Mathematics
Integrals of Some Particular Functions
The objective function of $LPP$ defined over the convex set attains its optimum value at
MHT CET - 2017
MHT CET
Mathematics
Linear Programming Problem
If $\int \sqrt{\frac{x - 5}{x -7}} dx = A \sqrt{x^2 - 12 x + 35 } + \log \, | x - 6 + \sqrt{x^2 - 12x + 35} | + C $ then $A = $
MHT CET - 2017
MHT CET
Mathematics
Integrals of Some Particular Functions
$\int^1_0 x \, \tan^{-1} x\,dx = $
MHT CET - 2017
MHT CET
Mathematics
Integrals of Some Particular Functions
The maximum value of $f(x) = \frac{\log \, x }{x} (x \neq 0 , x \neq 1)$ is
MHT CET - 2017
MHT CET
Mathematics
Application of derivatives
The number of principal solutions of $\tan 2 \theta = 1$ is
MHT CET - 2017
MHT CET
Mathematics
Trigonometric Functions
If
$z_1$
and
$z_2$
are z co-ordinates of the points of trisection of the segment joining the points
$A(2, 1, 4), B _1 + z_2 =$
MHT CET - 2017
MHT CET
Mathematics
introduction to three dimensional geometry
If the function \[ f(x) = \begin{cases} [ tan (\frac {\pi}{4}+x)]^{1/x} & \quad for\, x \neq 0\\ K \,\,\,\,\,\,\,\,\,\text{if } x =0 \end{cases} \] is continuous at
$x = 0$
, then
$K = ?$
MHT CET - 2017
MHT CET
Mathematics
Differentiability
The area of the region bounded by the lines
$y = 2x + 1, y = 3x + 1$
and
$x = 4$
is
MHT CET - 2017
MHT CET
Mathematics
applications of integrals
If $c$ denotes the contradiction then dual of the compound statement $\sim p \wedge ( q \vee c)$ is
MHT CET - 2017
MHT CET
Mathematics
mathematical reasoning
The point on the curve $y = \sqrt{x - 1}$ where the tangent is perpendicular to the line $2x + y - 5 = 0 $ is
MHT CET - 2017
MHT CET
Mathematics
Tangents and Normals
The objective function $z = 4x_1 + 5x_2$, subject to $2x_1 + x_2 \geq 7 , 2x_1 + 3x_2 \leq 15 , x_2 \leq 3, x_1 , x_2 \geq 0 $ has minimum value at the point
MHT CET - 2017
MHT CET
Mathematics
Linear Programming Problem
Prev
1
...
12
13
14
15
16
...
20
Next