>
MHT CET
>
Mathematics
List of top Mathematics Questions asked in MHT CET
Derivative of $log \left(sec\,\theta +tan \,\theta\right) $ with respect to $sec\, \theta$ at $\theta = \pi/4$ is
MHT CET - 2016
MHT CET
Mathematics
Differentiability
If Rolle�s theorem for $f\left(x\right)= e^{x} \left(sinx - cosx\right)$ is verified on $[\pi/4$, $5 \pi/4]$, then the value of $c$ is
MHT CET - 2016
MHT CET
Mathematics
Differentiability
If
$A$
and
$B$
are foot of perpendicular drawn from point
$Q (a, b, c)$
to the planes
$yz$
and
$zx$
, then equation of plane through the points
$A, B$
and
$O$
is ___________
MHT CET - 2016
MHT CET
Mathematics
Three Dimensional Geometry
For what value of
$k$
, the function defined by $ f(x) = \begin{cases} \frac{log(1+2x)sin\,x^\circ}{x^2} & \text{for } x \ge \text {0}\\ k & \text{for } x = \text{ 0} \end{cases}$ is continuous at
$x = 0$
?
MHT CET - 2016
MHT CET
Mathematics
Differentiability
The joint equation of lines passing through the origin and trisecting the first quadrant is ________
MHT CET - 2016
MHT CET
Mathematics
Straight lines
Direction cosines of the line
$\frac{x+2}{2} = \frac{2y-5}{3}, z = -1$
is
MHT CET - 2016
MHT CET
Mathematics
Three Dimensional Geometry
If $p :$ Every square is a rectangle $q :$ Every rhombus is a kite then truth values of $p ? q$ and $p ? q$ are __________ and ___________ respectively.
MHT CET - 2016
MHT CET
Mathematics
mathematical reasoning
If Matrix $A = \begin{bmatrix}1&2\\ 4&3\end{bmatrix}$ such that $Ax = I$, then $X = $_______
MHT CET - 2016
MHT CET
Mathematics
Determinants
$\int \left(\frac{\left(x^{2}+2\right)a^{\left(x +tan^{-1}x\right)}}{x^{2}+1}\right)dx = $
MHT CET - 2016
MHT CET
Mathematics
Integrals of Some Particular Functions
$\int\left(\frac{4e^{2}-25}{2e^{x}-5}\right)dx = Ax+B \,\,log |2e^{x}-5|+c$ then
MHT CET - 2016
MHT CET
Mathematics
Integrals of Some Particular Functions
If $\int\frac{f\left(x\right)}{log \left(sin\,x\right)}dx = log\left[log\,sin\,x\right]+c$ then $f\left(x\right)=$
MHT CET - 2016
MHT CET
Mathematics
Integrals of Some Particular Functions
The differential equation of the family of circles touching $y$-axis at the origin is
MHT CET - 2016
MHT CET
Mathematics
General and Particular Solutions of a Differential Equation
In $\Delta ABC \left(a-b\right)^{2} cos^{2} \frac{C}{2} + \left(a+b\right)^{2} sin^{2} \frac{C}{2} = $
MHT CET - 2016
MHT CET
Mathematics
Trigonometric Functions
If
$r.v. X \sim B \left(n = 5, P=\frac{1}{3}\right)$
then
$P(2 < X < 4) =$
______________
MHT CET - 2016
MHT CET
Mathematics
Probability
If $r. v. x :$ waiting time in minutes for bus and $p.d.f.$ of $x$ is given by $f(x) = \begin{cases} \frac{1}{5} , & 0\le x\le5 \\[2ex] 0, & \text{otherwise} \end{cases}$ then probability of waiting time not more than $4$ minutes is = _______
MHT CET - 2016
MHT CET
Mathematics
Probability
A point on
$XOZ$
plane divides the join of
$(5,-3,-2)$
and
$ (1,2,-2)$
on
MHT CET - 2009
MHT CET
Mathematics
introduction to three dimensional geometry
$ \int\limits_{5}^{10} \frac{1}{\left(x-1\right)\left(x-2\right)}dx $ is equal to
MHT CET - 2009
MHT CET
Mathematics
integral
$ \int e^{x} \frac{\left(x-1\right)}{x^{2}} dx $ is equal to
MHT CET - 2009
MHT CET
Mathematics
integral
$ \int\left[sin \left(log\,x\right)+cos\left(log\,x\right)\right]dx $ is equal to
MHT CET - 2009
MHT CET
Mathematics
integral
Find the function
$ f(x_1, x_2, x_3) $
satisfying
$ f(x_1, x_2, x_3) = 1 $
at
$ x_1 = 1, x_2 = x_3 = 0 $
.
MHT CET - 2009
MHT CET
Mathematics
Functions
Joint equation of pair of lines through $ (3, - 2) $ and parallel to $ x^2 - 4xy + 3y^2 = 0 $ is
MHT CET - 2009
MHT CET
Mathematics
Straight lines
For a certain function
$ u_x $
, given that
$ u_0 = 3, u_1 = 12, u_2 = 81, u_3 = 200, u_4 = 100, u_5 = 8 $
, then
$ \Delta ^{5}u_{x} $
is equal to
MHT CET - 2009
MHT CET
Mathematics
Algebra of Complex Numbers
The maximum value of
$ z = 9x + 13y $
subject to
$ 2x + 3y \le 18, 2x + y \le 10, x \ge 0, y \ge 0 $
is
MHT CET - 2009
MHT CET
Mathematics
linear inequalities in one variable
$ \lim\limits _{x\to 1 } \left(log \,ex\right)^{1/log\,x} $
is equal
MHT CET - 2009
MHT CET
Mathematics
Limits
Given $ P(A \cup B ) = 0.6,P(A\cap B) = 0.2 $ , the probability of exactly one of the event occurs is
MHT CET - 2009
MHT CET
Mathematics
Probability
Prev
1
...
12
13
14
15
16
...
18
Next