Question:

If $\int^{\pi/2}_{0} \log\cos x dx =\frac{\pi}{2} \log\left(\frac{1}{2}\right)$ then $ \int^{\pi/2}_{0} \log\sec x dx = $

Updated On: Jun 23, 2024
  • $\frac{\pi}{2} \log ( 1/2) $
  • $ 1 - \frac{\pi}{2} \log ( 1/2) $
  • $ 1 + \frac{\pi}{2} \log ( 1/2) $
  • $\frac{\pi}{2} \log \, 2 $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Answer (d) $\frac{\pi}{2} \log \, 2 $
Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.