Which one of the following curves correctly represents (schematically) the solution for the equation $\dfrac{df}{dx}+2f=3;\; f(0)=0$ ?
Let matrix $M=\begin{pmatrix} 4 & x \\ 6 & 9\end{pmatrix}$. If $\det(M)=0$, then
The value of \[ \lim_{n \to \infty} \frac{3n^2 + 5n + 4}{4 + 2n^2} \] is
The determinant of the matrix \[ \left[ \begin{array}{ccc} 1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & -1 & 2 \end{array} \right] \] is ...........
What is the solution of \( \int x^2 \ln x \, dx \)? Given \( C \) is an arbitrary constant.