\[ \begin{pmatrix} 3 & i & 0 \\ -i & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix} \]
\[ MN = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = 2 \]
\[ M^2 = M + 2I, \quad \text{where} \quad I \text{ denotes the } 3 \times 3 \text{ identity matrix.} \]
Let \( y(x) = x v(x) \) be a solution of the differential equation \[ x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 3y = 0. \] If \( v(0) = 0 \) and \( v(1) = 1, \) then \( v(-2) \) is equal to .................