\[ \begin{pmatrix} 3 & i & 0 \\ -i & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix} \]
are\[ \det(A - \lambda I) = 0 \]
where \( A \) is the matrix, \( \lambda \) is the eigenvalue, and \( I \) is the identity matrix.\[ A = \begin{pmatrix} 3 & i & 0 \\ -i & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix} \]
we find the characteristic equation by subtracting \( \lambda \) from the diagonal elements and computing the determinant. The resulting eigenvalues are \( 2i, 4, 8 \).