We have, $y =-x^{2}+3 $ $\Rightarrow x^{2} =-(y-3)$ The above curve intersect $X$ -axis at the points where $y=0$ $\therefore x^{2}=3 $ $\Rightarrow x=\pm \sqrt{3} $
$\therefore$ Point of intersection with $X$ -axis are $(\pm \sqrt{3}, 0)$. $\therefore$ Required area $=2 \int\limits_{0}^{\sqrt{3}} y\, d x$ $=2 \int\limits_{0}^{\sqrt{3}}\left(-x^{2}+3\right) d x$ $=2\left[\frac{-x^{3}}{3}+3 x\right]_{0}^{\sqrt{3}}$ $=2\left[\frac{-3 \sqrt{3}}{3}+3 \sqrt{3}\right]$ $=2[-\sqrt{3}+3 \sqrt{3}]$ $=4 \sqrt{3}$ sq units