>
Mathematics
List of top Mathematics Questions
The remainder when $3^{100} \times 2^{500}$ is divided by $5$ is
KCET - 2008
KCET
Mathematics
Binomial theorem
If the matrix $\begin{bmatrix}a&b\\ c&d\end{bmatrix}$ is commutative with the matrix $\begin{bmatrix}1&1\\ 0&1\end{bmatrix}$, then
WBJEE - 2008
WBJEE
Mathematics
Matrices
The value of
$x$
for which
$f(x) = x^3 - 6x^2 - 36x + 7 $
is increasing, belong to
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Application of derivatives
If
$ y =\sin^{-1} \left(\frac{5x+12 \sqrt{1 -x^{2}}}{13}\right)$
, then
$ \frac{dy}{dx} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$\vec{a}\cdot\hat {i}= \vec{a} \cdot(\hat {i}+\hat {j})= \vec{a}\cdot (\hat {i}+\hat {j}+\hat {k})=1$
then
$\vec{a}$
=
KCET - 2008
KCET
Mathematics
Vector Algebra
Let
$y$
be the number of people in a village at time
$t$
. Assume that the rate of change of the population is proportional to the number of people in the village at any time and further assume that the population never increases in time. Then the population of the village at any fixed time
$t$
is given by
VITEEE - 2008
VITEEE
Mathematics
Differential equations
The perimeter of a certain sector of a circle is equal to the length of the arc of the semicircle. Then the angle at the centre of the sector in radians is
KCET - 2008
KCET
Mathematics
Trigonometric Functions
The tangents drawn at the extremeties of a focal chord of the parabola
$y^2 = 16 x$
KCET - 2008
KCET
Mathematics
Conic sections
The point
$(5, - 7)$
lies outside the circle
KCET - 2008
KCET
Mathematics
Circle
The equation to the normal to the hyperbola
$\frac {x^2}{16}- \frac {y^2}{9}=1$
at
$(-4,0)$
is
KCET - 2008
KCET
Mathematics
Hyperbola
One possible condition for the three points $(a, 5), (b, a)$ and $(a^2, - b^2)$ to be collinear is
WBJEE - 2008
WBJEE
Mathematics
introduction to three dimensional geometry
If $\,^{16}C_{r} =\, ^{16}C_{r+1}$, then the value of $\, ^{r}P_{r-3}$ is
WBJEE - 2008
WBJEE
Mathematics
permutations and combinations
The projection of
$\vec{a}=3\hat{i}-\hat{j}+5\hat {k} $
on
$\vec{b}=2 \hat {i}+3 \hat j+\hat k$
is
KCET - 2008
KCET
Mathematics
Vector Algebra
If $R$ be a relation defined as $aRb iff |a - b| > 0$, then the relation is
VITEEE - 2008
VITEEE
Mathematics
Functions
If
$I =\int\frac{x^{5}}{\sqrt{1+x^{3}}}dx$
, then I is equal to
VITEEE - 2008
VITEEE
Mathematics
Methods of Integration
The solution of the differential equation $\frac{dy}{dx} = \frac{xy + y}{xy + x}$ is
BITSAT - 2008
BITSAT
Mathematics
Differential equations
The ten's digit in $1! + 4!+ 7! + 10!+12! + 13! + 15! +16! + 17!$ is divisible by
KCET - 2008
KCET
Mathematics
Binomial theorem
The characteristic roots of the matrix $\begin{bmatrix} {1}&{0} &{0}\\ {2}&{3}& {0} \\ {4}&{5}&{6}\\ \end{bmatrix} $ are
KCET - 2008
KCET
Mathematics
Matrices
The probability that number selected at random from the number
$1, 2, 3, 4, 5, 6, 7, 8, ..., 100$
is a prime, is
J & K CET - 2008
J & K CET
Mathematics
Probability
The value of
$\tan^{-1} \frac{\sqrt{2+\sqrt{3}} -\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3} } +\sqrt{2-\sqrt{3}}} $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Inverse Trigonometric Functions
If
$[x]$
denotes the greatest integer function, then
$\int\limits_{1}^{4} \left(\left[x\right] -1\right)\left(\left[x\right] -2\right)\left(\left[x\right] -3\right)\left(\left[x\right] -4\right)dx = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
integral
If
$\log_2 \: \sin x - \log_2 \cos x -\log_2(1 - \tan^2x) = - 1$
, then
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Trigonometric Functions
If
$u = f(x^2) , v = g(x^3) , f'(x) = \sin x $
and
$g'(x) = \cos x,$
then
$ \frac{du}{dv} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$x= 3 \cos t - 2 \cos^{3} t , y = 3\sin t - 2 \sin^{3} t ,$
then
$ \frac{d^{2}y}{dx^{2}} t = \frac{\pi}{6}$
is
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
If
$\tan^{-1} \left(\frac{x}{y}\right) + \log \sqrt{x^{2} +y^{2}} = 0 $
, then
$\frac{dx}{dy} = $
COMEDK UGET - 2008
COMEDK UGET
Mathematics
Continuity and differentiability
Prev
1
...
661
662
663
664
665
...
922
Next