D, E, F are respectively the points on the sides $BC$, $CA$ and $AB$ of a $\triangle ABC$ dividing them in the ratio $2:3$, $1:2$, $3:1$ internally. The lines $BE$ and $CF$ intersect on the line $AD$ at $P$. If $\overrightarrow{AP} = x_1 \cdot \overrightarrow{AB} + y_1 \cdot \overrightarrow{AC}$, then $x_1 + y_1 =$