Step 1: Identify the standard form of the hyperbola.
The given hyperbola is:
\[
\frac{(x - 3)^2}{3} - \frac{(y - 2)^2}{2} = 1
\]
This is in the form \(\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1\), where \(h = 3\), \(k = 2\), \(a^2 = 3\), \(b^2 = 2\). So, \(a = \sqrt{3}\), \(b = \sqrt{2}\).
Step 2: Write the equations of the asymptotes.
For a hyperbola of the form \(\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1\), the asymptotes are:
\[
y - k = \pm \frac{b}{a} (x - h)
\]
Substitute \(h = 3\), \(k = 2\), \(a = \sqrt{3}\), \(b = \sqrt{2}\):
\[
\frac{b}{a} = \frac{\sqrt{2}}{\sqrt{3}} = \sqrt{\frac{2}{3}}
\]
The asymptotes are:
\[
y - 2 = \sqrt{\frac{2}{3}} (x - 3) \quad \text{and} \quad y - 2 = -\sqrt{\frac{2}{3}} (x - 3)
\]
Step 3: Form the equation of the pair of asymptotes.
Rewrite the asymptote equations:
\[
y - 2 = \sqrt{\frac{2}{3}} (x - 3) \implies \sqrt{3} (y - 2) = \sqrt{2} (x - 3) \implies \sqrt{2} x - \sqrt{3} y - 3\sqrt{2} + 2\sqrt{3} = 0
\]
\[
y - 2 = -\sqrt{\frac{2}{3}} (x - 3) \implies \sqrt{3} (y - 2) = -\sqrt{2} (x - 3) \implies \sqrt{2} x + \sqrt{3} y - 3\sqrt{2} - 2\sqrt{3} = 0
\]
The equation of the pair of asymptotes is the product of these two equations set to zero:
\[
\left(\sqrt{2} x - \sqrt{3} y - 3\sqrt{2} + 2\sqrt{3}\right) \left(\sqrt{2} x + \sqrt{3} y - 3\sqrt{2} - 2\sqrt{3}\right) = 0
\]
Expand:
\[
(\sqrt{2} x - \sqrt{3} y - 3\sqrt{2} + 2\sqrt{3})(\sqrt{2} x + \sqrt{3} y - 3\sqrt{2} - 2\sqrt{3}) = (\sqrt{2} x)^2 - (\sqrt{3} y)^2 - (3\sqrt{2} - 2\sqrt{3})(\sqrt{2} x + \sqrt{3} y) + (3\sqrt{2} - 2\sqrt{3})(3\sqrt{2} + 2\sqrt{3})
\]
\[
= 2x^2 - 3y^2 - (3\sqrt{2} - 2\sqrt{3})(\sqrt{2} x + \sqrt{3} y) + (9 \cdot 2 - 4 \cdot 3)
\]
\[
= 2x^2 - 3y^2 - (3 \cdot 2 x - 2 \cdot \sqrt{6} x + 3 \cdot \sqrt{6} y - 2 \cdot 3 y) + (18 - 12)
\]
\[
= 2x^2 - 3y^2 - 6x + 2\sqrt{6} x - 3\sqrt{6} y + 6y + 6
\]
Combine terms:
\[
2x^2 - 3y^2 - (6 - 2\sqrt{6})x + (6 - 3\sqrt{6})y + 6 = 0
\]
Alternatively, simplify directly:
\[
2x^2 - 3y^2 - (3\sqrt{2} - 2\sqrt{3})(\sqrt{2} x) - (3\sqrt{2} - 2\sqrt{3})(\sqrt{3} y) + (9 \cdot 2 - 4 \cdot 3) = 2x^2 - 3y^2 - 6x + 2\sqrt{6} x - 3\sqrt{6} y + 6y + 6
\]
Notice the correct expansion should yield:
\[
2x^2 - 3y^2 - 12x + 12y + 6 = 0
\]
This matches option (4).
Step 4: Verify with the hyperbola method.
The equation of the pair of asymptotes is the hyperbola equation set equal to a constant (difference from 1):
\[
\frac{(x - 3)^2}{3} - \frac{(y - 2)^2}{2} = 0
\]
\[
(x - 3)^2 \cdot 2 - (y - 2)^2 \cdot 3 = 0 \implies 2x^2 - 12x + 18 - 3y^2 + 12y - 12 = 0 \implies 2x^2 - 3y^2 - 12x + 12y + 6 = 0
\]
This confirms option (4).
Final Answer:
\[
\boxed{4}
\]