\[ f(x) = \log_e \left( 4x^2 + 11x + 6 \right) + \sin^{-1} \left( 4x + 3 \right) + \cos^{-1} \left( \frac{10x + 6}{3} \right) \]then \( 36|\alpha + \beta| \) is equal to:
Let \(P(S)\) denote the power set of \(S = \{1, 2, 3, \ldots, 10\}\). Define the relations \(R_1\) and \(R_2\) on \(P(S)\) as \(A R_1 B\) if \[(A \cap B^c) \cup (B \cap A^c) = ,\]and \(A R_2 B\) if\[A \cup B^c = B \cup A^c,\]for all \(A, B \in P(S)\). Then:
Let $y=f(x)=\sin ^3\left(\frac{\pi}{3}\left(\cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^3+5 x^2+1\right)^{\frac{3}{2}}\right)\right)\right)$ Then, at $x=1$
If the value of real number a> 0 for which \(x^2\)-5ax+1-0 and \(x^2-a x-5-0\) have a common real root is \(\frac{3}{\sqrt{2 \beta}}\) then \( \beta\) is equal to_______
Let \(A=\) [\(a_{ij}\)]\(_{2\times2}\) be a matrix and \(A^2 = I\) where \(a_{ij} \neq0\). If a sum of diagonal elements and b=det(A), then \(3a^2+4b^2\) is
If f(x) = [a+13 sinx] & x ฮต (0, \(\pi\)), then number of non-differentiable points of f(x) are [where 'a' is integer]
Let P be a point on the parabola y2 = 4ax, where a > 0. The normal to the parabola at P meets the x -axis at a point Q. The area of the triangle PFQ where F is the focus of the parabola, is 120. If the slope m of the normal and a are both positive integers, then the pair (a, m) is
f domain of the function \[ f(x) = \log_e \left(\frac{6x^2 + 5x + 1}{2x - 1}\right) + \cos^{-1}\left(\frac{2x^2 - 3x + 4}{3x - 5}\right) \] is \( (\alpha, \beta) \cup (\gamma, \delta) \), then \( 18(\alpha^2 + \beta^2 + \gamma^2 + \delta^2) \) is equal to __________.