Step 1: Write in terms of sine and cosine.
\[
(\csc A + \cot A)(1 - \cos A) = \left(\frac{1}{\sin A} + \frac{\cos A}{\sin A}\right)(1 - \cos A)
\]
\[
= \frac{(1 + \cos A)(1 - \cos A)}{\sin A}
\]
Step 2: Simplify the numerator using an identity.
\[
(1 + \cos A)(1 - \cos A) = 1 - \cos^2 A = \sin^2 A
\]
Step 3: Substitute back.
\[
(\csc A + \cot A)(1 - \cos A) = \frac{\sin^2 A}{\sin A} = \sin A
\]
Step 4: Conclusion.
Hence, the value of \( (\csc A + \cot A)(1 - \cos A) \) is \( \boxed{\sin A} \).