Step 1: Let the speed of the current be $x$ km/h.
Then,
Downstream speed = $(18 + x)$ km/h,
Upstream speed = $(18 - x)$ km/h.
Step 2: Use the time formula.
\[
\text{Time} = \dfrac{\text{Distance}}{\text{Speed}}
\]
Given that the time for upstream journey is one hour more than that for downstream:
\[
\dfrac{24}{18 - x} = \dfrac{24}{18 + x} + 1
\]
Step 3: Simplify the equation.
\[
\dfrac{24}{18 - x} - \dfrac{24}{18 + x} = 1
\]
\[
24 \left( \dfrac{(18 + x) - (18 - x)}{(18)^2 - x^2} \right) = 1
\Rightarrow 24 \left( \dfrac{2x}{324 - x^2} \right) = 1
\Rightarrow 48x = 324 - x^2
\Rightarrow x^2 + 48x - 324 = 0
\]
Step 4: Solve for $x$.
\[
x^2 + 48x - 324 = 0
\Rightarrow x = 6 \, \text{(taking positive value since speed cannot be negative)}
\]
Step 5: Conclusion.
Hence, the speed of the current is 6 km/h.