A particle is moving along the curve \( y = 8x + \cos y \), where \( 0 \leq y \leq \pi \). If at a point the ordinate is changing 4 times as fast as the abscissa, then the coordinates of the point are:
If $ A = \begin{bmatrix} 0 & x & 16 \\ x & 5 & 7 \\ 0 & 9 & x \end{bmatrix} $ is a singular matrix, then $ x $ is equal to
If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} \quad \text{and} \quad A \, \text{adj} \, A = A A^t, \quad \text{then} \, 5a + b \, \text{is equal to}$
The solution set for the inequality $ 13x - 5 \leq 15x + 4<7x + 12; x \in W $