Let \(f\) be a non-negative function in \([0, 1]\) and twice differentiable in \((0, 1)\). If \(\int_0^x \sqrt{1 - (f'(t))^2} \, dt = \int_0^x f(t) \, dt\), \(0 \leq x \leq 1\) and \(f(0) = 0\), then \(\lim_{x \to 0} \frac{1}{x^2} \int_0^x f(t) \, dt\) :