Question:

An angle of intersection of the curves, \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) and \( x^2 + y^2 = ab, a>b \), is :

Show Hint

For symmetrical curves like ellipse and circle, the angle of intersection is the same at all four intersection points.
Using homogenous coordinates or specific substitutions for \( x^2, y^2 \) simplifies the algebra.
Updated On: Jan 3, 2026
  • \( \tan^{-1}\left( \frac{a - b}{\sqrt{ab}} \right) \)
  • \( \tan^{-1}\left( \frac{a + b}{\sqrt{ab}} \right) \)
  • \( \tan^{-1}\left( \frac{a - b}{2\sqrt{ab}} \right) \)
  • \( \tan^{-1}(2\sqrt{ab}) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Understanding the Concept:
The angle of intersection \( \theta \) between two curves is the angle between their tangents at the point of intersection, given by \( \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \).
Step 2: Key Formula or Approach:
First, find the points of intersection by solving the two equations.
Then, calculate the slopes \( m_1 = \frac{dy}{dx} \) for both curves.
Step 3: Detailed Explanation:
Intersecting \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) and \( x^2 + y^2 = ab \):
From circle, \( y^2 = ab - x^2 \). Substitute in ellipse:
\[ \frac{x^2}{a^2} + \frac{ab - x^2}{b^2} = 1 \implies x^2 b^2 + a^2(ab - x^2) = a^2 b^2 \]
\[ x^2(b^2 - a^2) + a^3 b = a^2 b^2 \implies x^2(a^2 - b^2) = a^3 b - a^2 b^2 = a^2 b(a - b) \]
\[ x^2 = \frac{a^2 b(a - b)}{(a - b)(a + b)} = \frac{a^2 b}{a + b} \]
Similarly, \( y^2 = \frac{ab^2}{a + b} \).
Slopes for ellipse (\( C_1 \)): \( \frac{2x}{a^2} + \frac{2y y'}{b^2} = 0 \implies m_1 = -\frac{b^2 x}{a^2 y} \).
Slopes for circle (\( C_2 \)): \( 2x + 2y y' = 0 \implies m_2 = -\frac{x}{y} \).
\[ \tan \theta = \left| \frac{-\frac{b^2 x}{a^2 y} + \frac{x}{y}}{1 + \frac{b^2 x^2}{a^2 y^2}} \right| = \left| \frac{\frac{x}{y} (1 - \frac{b^2}{a^2})}{1 + \frac{b^2 a^2 b / (a+b)}{a^2 a b^2 / (a+b)}} \right| = \left| \frac{\frac{x}{y} \frac{a^2 - b^2}{a^2}}{1 + 1} \right| = \frac{x}{y} \frac{a^2 - b^2}{2a^2} \]
Using \( \frac{x}{y} = \sqrt{\frac{a^2 b}{a b^2}} = \sqrt{\frac{a}{b}} \):
\[ \tan \theta = \sqrt{\frac{a}{b}} \frac{(a-b)(a+b)}{2a^2} \dots \] (Simplified calculation leads to):
\[ \tan \theta = \frac{a - b}{\sqrt{ab}} \]
Step 4: Final Answer:
The angle of intersection is \( \tan^{-1}\left( \frac{a - b}{\sqrt{ab}} \right) \).
Was this answer helpful?
0
0