\(\begin{array}{l} \text{Consider a matrix}~A=\begin{bmatrix}\alpha & \beta & \gamma \\\alpha^2 & \beta^2 & \gamma^2 \\\beta+\gamma & \gamma+\alpha & \alpha+\beta \\\end{bmatrix}\end{array}\)
where \(α, β, γ\) are three distinct natural numbers.
If \(\begin{array}{l}\frac{\text{det(adj(adj(adj(adj A))))}}{\left(\alpha-\beta\right)^{16}\left(\beta-\gamma\right)^{16}\left(\gamma-\alpha\right)^{16}}=2^{32}\times3^{16},\end{array}\)
then the number of such 3-tuples \((α, β, γ)\) is _________.