For \( a, \beta \in \mathbb{R} \), define the map \( \varphi_{a,\beta}: \mathbb{R} \to \mathbb{R} \) by
\[
\varphi_{a,\beta}(x) = ax + \beta.
\]
Let
\[
G = \{ \varphi_{a,\beta} \mid (a, \beta) \in \mathbb{R}^2 \}.
\]
For \( f, g \in G \), define \( g \circ f \in G \) by
\[
(g \circ f)(x) = g(f(x)).
\]
Then which of the following statements is/are TRUE?