If \( y = \sqrt{e^x} \), \( x > 0 \), then \( \frac{dy}{dx} = \underline{\hspace{2cm}} \)
Match the pairs correctly:
(i) \( \int \tan x \, dx \) \(\hspace{3.5cm}\) \( \log |\sin x| + c \) (ii) \( \int \cot x \, dx \) \(\hspace{3.5cm}\) \( \log |\csc x| - \cot x + c \) (iii) \( \int \sec x \, dx \) \(\hspace{3.5cm}\) \( \log |\sec x + \tan x| + c \) (iv) \( \int \csc x \, dx \) \(\hspace{3.5cm}\) \( -\log |\csc x + \cot x| + c \) (v) \( \int \frac{\cos x}{\sin x} \, dx \) \(\hspace{3.5cm}\) \( \log |\sin x| + c \) (vi) Derivative of \( \sin 2x \) with respect to \( x \) \(\hspace{0.75cm}\) \( 2 \cos 2x \)
Order of differential equation \( xy \frac{d^2y}{dx^2} + x \left( \frac{dy}{dx} \right)^2 - y \frac{dy}{dx} = 0 \) is 2.
If \( A = \{1, 2, 3\} \), \( B = \{4, 5, 6, 7\} \), and \( f = \{(1, 4), (2, 5), (3, 6)\} \) is a function from A to B, then show that \( f \) is one-one.
Examine that the relation \( R \) in the set \( \{1, 2, 3, 4\} \) given by \( R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\} \) is reflexive and transitive but not symmetric.
Prove that \( \sin^{-1}(-x) = -\sin^{-1}(x) \), where \( x \in [-1, 1] \)
Prove that \( \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \), where \( x \in [-1, 1] \)
Show that the function given by \( f(x) = e^{3x} \) is increasing on \( R \).
Find the area of the region bounded by the curve \( y = x^2 \,\,\, \text{and the line} \,\,\, y = 4. \)
Find the area of the region bounded by the curve \( y^2 = 4x \,\,\, \text{and the line} \,\,\, x = 3. \)
Find the general solution of the differential equation \[ x \frac{dy}{dx} + 2y = x^2 \,\,\, \text{where} \,\,\, (x \neq 0). \]
Find the shortest distance between parallel lines: \[ \vec{r_1} = \hat{i} + 2 \hat{j} - 4 \hat{k} + \lambda (2 \hat{i} + 3 \hat{j} + 6 \hat{k}) \,\,\, \text{and} \,\,\, \vec{r_2} = 3 \hat{i} + 3 \hat{j} - 5 \hat{k} + \mu (2 \hat{i} + 3 \hat{j} + 6 \hat{k}) \]
Find the shortest distance between the lines: \[ \vec{r_1} = (1 - t) \hat{i} + (t - 2) \hat{j} + (3 - 2t) \hat{k} \,\,\, \text{and} \,\,\,\vec{r_2} = (s + 1) \hat{i} + (2s - 1) \hat{j} - (2s + 1) \hat{k} \]