Step 1: Understanding differentiability and continuity.
A function \( f \) is said to be differentiable at a point \( a \) if the derivative exists at that point. That is, if the limit
\[
\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
\]
exists. If this limit exists, the function is differentiable at \( a \).
For the function to be continuous at \( a \), the following condition must hold:
\[
\lim_{x \to a} f(x) = f(a).
\]
Step 2: Showing that differentiability implies continuity.
Assume that \( f \) is differentiable at \( a \). By definition, we know that:
\[
\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \text{exists}.
\]
This is the definition of the derivative of \( f \) at \( a \), which implies that the function has a well-defined rate of change at \( a \).
Now, let's prove that \( f \) is continuous at \( a \). For continuity, we need to show that:
\[
\lim_{x \to a} f(x) = f(a).
\]
From the definition of the derivative, we have:
\[
\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = L,
\]
where \( L \) is the derivative of \( f \) at \( a \). This means that as \( h \to 0 \), the difference between \( f(a+h) \) and \( f(a) \) gets closer and closer to zero.
Thus, by the definition of continuity:
\[
\lim_{x \to a} f(x) = f(a),
\]
proving that \( f \) is continuous at \( a \).
Step 3: Conclusion.
Therefore, we have proven that if a function \( f \) is differentiable at a point \( a \), then it must also be continuous at that point.
Match List-I with List-II
| List-I | List-II |
|---|---|
| (A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
| (B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
| (C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
| (D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
निम्नलिखित में से किसी एक विषय पर निबंध लिखिए:
(i) पर्यावरण की सुरक्षा
(ii) दुखों की उपयोगिता
(iii) विद्यार्थी और अनुशासन
(iv) राष्ट्रीय एकता और अखंडता
(v) इंटरनेट का दैनिक जीवन में अनुपयोग
परीक्षा की तैयारी की जानकारी देते हुए पिता को पत्र लिखिए।
द्वनि विस्तारक यंत्रों पर प्रतिबंध लगाने हेतु जिला सचिव महोदय को प्रार्थना पत्र लिखिए।
निम्नलिखित गद्यांश की संदर्भ-प्रसंग सहित व्याख्या कीजिए: गद्यांश: पैसा पावर है। पर उसके स्वभाव में आस-पास सालों तक जमा न जमा हो तो क्या वह ताकत पावर है! पैसे को देखने के लिए बैंक-हिसाब सीट, पर माल-असबाब, मकान-कोठी तो अनदेखे भी दीखते हैं। पैसे के उस 'पेसींग पावर' के प्रयोग में ही पावर का खेल है।
निम्नलिखित गद्यांश की संदर्भ-प्रसंग सहित व्याख्या कीजिए: गद्यांश: एक बार वह 'डांग' देखने श्यामनगर शेला गया। पहलवानों की कुस्ती और डांव-पेच देखकर उससे नहीं रहा गया। जवानी की मस्ती और होल की ललकारती हुई आवाज़ ने उसकी नसों में बिजली उत्पन्न कर दी। उसने बिना कुछ सोचे-समझे दंगल में 'शेर के बच्चों' को चुनौति दे दी।