The resistivity of a pure semiconductor at 298 K is \(3000\,\Omega\text{m}\).
Assume the number of electrons excited \((n_e)\) across the band gap is
\[
n_e = N_A \exp\left(-\frac{E_g}{k_B T}\right)
\]
Given:
\[
N_A = 6.02 \times 10^{23}\ \text{mol}^{-1},\quad
k_B = 8.62 \times 10^{-5}\ \text{eV/K},\quad
T = 298\ \text{K}
\]
Mobilities:
\[
\mu_e = 0.14\ \text{m}^2/(\text{V·s}),\quad
\mu_h = 0.06\ \text{m}^2/(\text{V·s})
\]
Absolute electron charge:
\[
q = 1.60 \times 10^{-19}\ \text{C}
\]